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ABSTRACT
Neuromorphic computer architectures utilize an event-based par-
adigm to operate in low-power environments and achieve high-
throughput with massive parallelism. The integrate-and-fire (IF)
neuron model has become a greatest common denominator among
many emerging architectures built from materials with neuron-
like response properties. There is recent interest in using these
architectures as general purpose computing devices, especially for
problems that are computationally demanding such as constraint
satisfaction, integer factorization, and numerical analysis. However,
programming a spiking neural network (SNN) to perform these
kinds of tasks remains a difficult problem. There is currently a lack
of overarching principles to guide this kind of development, and
specific solutions generally remain unportable between different
architectures. We identify some of the challenges to using neu-
romorphic computers for general purpose computing. To address
these challenges, we introduce four design principles that aim to
facilitate good design on a SNN architecture. We then describe
several patterns that solve recurring neuromorphic design chal-
lenges, including serial execution on a parallel architecture and the
implementation of structured memory in a SNN.

KEYWORDS
neuromorphic computing, software design, time intervals

ACM Reference Format:
John V. Monaco and Ryad B. Benosman. 2020. General Purpose Computa-
tion with Spiking Neural Networks: Programming, Design Principles, and
Patterns. In Neuro-inspired Computational Elements Workshop (NICE ’20),
March 17–20, 2020, Heidelberg, Germany. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3381755.3398698

1 INTRODUCTION
Greater interaction between computational science and neuro-
science promises to aid in the development of low-power brain-
inspired architectures [17]. It is apparent that humans are capable
of both pattern recognition and symbolic processing tasks, but it is
not yet clear how to efficiently integrate the two on a single archi-
tecture. Spiking neural networks (SNN), are capable of universal
computation [16]. This model exhibits properties of both digital
computation, through spike event rates, and analog computation,
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through the precise timing between spikes [25]. SNNs have become
a focal point for near-future neuromorphic architectures, as there
exist a variety of materials shown to emulate the behavior of the
spiking neuron. Yet, a hurdle remains in programming such devices
to perform general purpose computing tasks, such as control flow
and memory management.

There are predominantly two ways to perform general purpose
computationwith neural networks. The first is a top-down approach
whereby the parameters of a neural network are modified through
a training procedure (e.g., backpropagation) using input/output
examples. The network itself might be trained to perform some
specific task, such as sort a list [10], or execute a sequence of instruc-
tions [20]. This approach necessitates the existence of exemplars
and relies on the ability to generalize through learning, e.g., the
ability to solve symbolic processing tasks not seen during training.

The second approach to general purpose computing is bottom-
up, whereby the network is gradually constructed from primitive
components until the desired behavior is achieved. This approach is
akin to software development, in which an algorithm represented in
a high-level programming language is translated into an equivalent
neural network. Parts of this process may be automated, such as
through compilation in order to abstract low-level architectural
details away from the programmer [22, 23].

This work is concerned with the bottom-up approach to pro-
gramming a spiking neural network. This process is analogous to
writing software and shares some of the same goals as software
engineering: a good SNN design should be maintainable, extensible,
and consistent. However, there are currently a lack of design princi-
ples to facilitate good design when programming a SNN. In addition,
using a SNN for general purpose computing carries challenges that
are inherent to programming parallel architectures, notably syn-
chronization and the ability to enforce serial execution when one
operation takes precedence over another.

In this paper, we highlight these challenges and propose four
overarching design principles that may facilitate future software de-
velopment on neuromorphic architectures. These include principles
of encapsulation, composition, input precedence, and spike parity.
We then describe several patterns that solve recurring problems in
SNN design, such as ordered execution and memory management.

2 BACKGROUND
2.1 Neuron Model
In this work, we use a simplified version of the neuron model
in Lagorce and Benosman [15] shown in Figure 1. Spikes can be
transmitted along three different synapse types:𝑉 -synapses modify
the membrane potential directly by 𝑤𝑒 , while 𝑔𝑒 -synapses and
gated 𝑔𝑓 -synapses modify the membrane potential respectively
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Figure 1: Neuronmodelwithmultiple synaptic dynamic ker-
nels as introduced in Lagorce and Benosman [15] .

with linear and exponential kernels. Neurons emit a spike event
when the membrane potential reaches a predefined threshold 𝑉𝑡 ,
which is the same for all neurons. The internal variable 𝑔𝑒 can
be viewed as a modifiable leak that adjusts according to spikes
transmitted over 𝑔𝑒 -synapses. Each synapse is configured with a
propagation delay, which is the time it takes a spike event to reach
the postsynaptic neuron. By default, this is 𝑇syn = 1ms, and we
avoid synaptic connections less than𝑇syn. This model is compatible
with the IF model [1], as described in Section 5.2, thus remains
portable across a variety of neuromorphic architectures.

We simulate the above neuron model using Brian [9] with Euler
integration and time step 𝑑𝑡 = 𝑇neu = 1 𝜇s where 𝑇neu is the time
it takes for a neuron to emit a spike. The networks in this paper
utilize only 𝑉 - and 𝑔𝑒 -synapses with weights chosen from a small
set of different values. This approach is amenable to neuromorphic
architectures in which synapse weights are either shared or limited
in resolution [3]. Generally, synapse weights are proportional to
the magnitude required to either invoke or suppress a spike. For
convenience, we define two 𝑉 -synapse weights: excitatory weight
𝑤𝑒 = 𝑉𝑡 and inhibitory weight𝑤𝑖 = −𝑉𝑡 . The weight𝑤𝑒 is needed
to induce a postsynaptic spike from the resting state. Additionally,
let𝑤acc =

𝜏𝑚𝑉𝑡
𝑇max

be the weight needed for a spike along a𝑔𝑒 -synapse
to induce a spike after time 𝑇max, starting from a resting state.

2.2 Value Representation
Values are encoded as the precise time interval between two spikes,
and neural networks are constructed to operate on the temporally
encoded values. The encoding function 𝑓 (·) and decoding function
𝑓 −1 (·) are given by

Δ𝑡 = 𝑓 (𝑥) = 𝑇min + 𝑥𝑇cod (1)

𝑥 = 𝑓 −1 (Δ𝑡) = Δ𝑡 −𝑇min
𝑇cod

(2)

where Δ𝑡 is a time interval between two spikes, 𝑥 ∈ [0, 1],𝑇min is a
minimum interval necessary for encoding 0, and 𝑇cod is the range
over which values can be encoded.

The maximum number of unique values that can be represented
over the finite interval 𝑇max = 𝑇min + 𝑇cod is 𝑇cod

𝑑𝑡
, limited by the

time step 𝑑𝑡 . Reasoning is as follows: consider Δ𝑡1 = 𝑓 (𝑥1) and
Δ𝑡2 = 𝑓 (𝑥2) with |Δ𝑡1 − Δ𝑡2 | < 𝑑𝑡 ; then Δ𝑡1 and Δ𝑡2 are equal to
exactly the same number of time steps in the simulator.

2.3 Design Challenges
We motivate the need for SNN programming design principles and
patterns by identifying two different challenges: the first due to
inherent differences between neuromorphic architectures and the
von Neumann architecture, and the second due to neuromorphic
architectural diversity.

While much effort has focused on the use of neuromorphic com-
puters as deep neural network accelerators [5, 7], the same devices
have been proposed as platforms for high performance computing
(HPC) [2, 12] and shown to be capable of both speeding up and re-
ducing energy requirements of non-machine learning tasks [21, 26].
This requires the ability to manipulate symbols, notably: storing
and retrieving values from memory, binding variables, mechanisms
for control flow, and evaluating mathematical functions. Within a
SNN, these capabilities may be programmed in a way analogous
to the way conventional software is written [15]. However, the
word programming is somewhat of a misnomer. By definition, an
algorithm is a sequence of instructions, and programming largely
involves the implementation of algorithms. In contrast, all parts
of a SNN execute simultaneously and there is no innate ordering
of instructions at the hardware level. Thus, the implementation of
sequential algorithms on massively parallel machines presents one
of the main challenges to programming SNNs. We introduce some
patterns that provide general mechanisms for control flow within
a SNN to help address this challenge.

Emerging neuromorphic architectures (e.g., [3, 4, 8], see [13] for a
survey) are diverse in terms of neuron model (e.g., dynamics, refrac-
tory period), topological constraints (e.g., maximum fan-in/fan-out),
noise, tolerance to component failure, and parameter constraints
(e.g., binary-valued synapse weights). This diversity presents a chal-
lenge for development. Solutions tend to remain platform-specific,
adapting to the constraints of a particular architecture. Because of
this diversity there is also a lack of tools to facilitate development,
such automated compilation, static error checking, and debugging
environments. We aim to address this challenge by describing prin-
ciples that apply broadly to SNN programming and patterns that
are compatible with the IF neuron model which can be simulated
on a range of architectures.

3 DESIGN PRINCIPLES
A design principle is an overarching concept meant to facilitate
good design [18]. In software engineering, design principles aim to
mitigate the symptoms that plague bad design, including rigidity
(code that is difficult to modify), fragility (code that breaks when
modified), immobility (code that is not reusable), and viscosity
(designs that are difficult to preserve). Principles such as single
responsibility and interface segregation form the basis of object-
oriented (OO) software design.

The development of OO software design was biologically in-
spired, taking into account the way cells communicate by passing
messages [19]. In this light, some software engineering principles
naturally extend to SNN design. For example, the single respon-
sibility principle states that a class should encapsulate a behavior
or responsibility within a larger program. Applied to SNN devel-
opment, networks may be constructed such that each network
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encapsulates a function or behavior. This would likely make it eas-
ier to reason about a larger network, as individual sub-networks
could be tested and debugged in isolation. However not all OO
design principles can be applied to SNN design. For example, poly-
morphism, which provisions a single interface to different types,
has no direct application within a SNN due to the lack of a type
system. It is therefore necessary to identify foundational principles
that guide SNN design.

We describe four principles, some inspired by OO design, that
aim to facilitate SNN designs that are understandable and maintain-
able. These include:

Principle of encapsulation: neurons should form networks
that implement a single behavior, publicly exposing only
a few input and output neurons that define the network’s
application programming interface (API).

Principle of composition: communication between encap-
sulated networks should occur only through API neurons.
Complex behavior is achieved by connecting networks to-
gether, leading to a hierarchical structure.

Principle of input precedence: each network implements a
state machine in which only a subset of inputs are active
at any given time. Neurons must know how this machine
transitions between states in order to properly use the API.

Principle of spike parity: temporally encoded values traverse
a network in spike pairs, and networks largely transition
between states depending on the number of spikes received;
therefore neurons must know how many spikes to send.

In the rest of this section, we describe these design principles in
detail and provide examples of their use.

3.1 Principle of Encapsulation
A challenge in SNN programming is scaling up networks to han-
dle increasingly complex and diverse tasks. As networks grow in
size, so too does the difficulty in reasoning about, modifying, and
debugging networks. This motivates the principle of encapsulation,
which states that each network should implement only a single
behavior or function and expose this behavior through designated
input and output neurons that form the network’s API. A network
should communicate with other neurons only through it’s API,
internalizing the structure that implements a particular behavior.
Encapsulation is much like that in OO design, which specifies that
a class should encapsulate a single responsibility.

Forcing network communication through an API creates a bot-
tleneck in terms of programming effort. Once a given behavior has
been implemented, debugged, and encapsulated, it can be reused
in larger networks. Developers can focus on connecting interfaces
and building hierarchically without having to reason about each
network’s behavior. In this way, encapsulation enables composi-
tion (described in the next section), and these two principles go
hand-in-hand.

There are primarily four different kinds of networks depending
on the role of the network and encapsulated behavior:

Functional networks encapsulate primitive functions, such
as logic, arithmetic, and comparison functions. These net-
works are primarily stateless, in that they should return to
some resting state after being used.

Connecting networks form the glue between various parts
of a larger SNN. These include converters, synchronizers,
and spatiotemporal mappings. For example, interfacing with
a digital computer might require converting temporally en-
coded values to a binary spike pattern.

Routing networks form the basis of control flow within a
SNN. These include networks to perform branching, con-
dition checking, and other ways of selectively activating
different parts of a network. Routing networks largely con-
trol the flow of information through a network.

Memory networks act as registers and form the basis of sym-
bol manipulation within a SNN. These include networks that
store primitive scalar values, such as volatile and persistent
memory, and complex data structures built from primitives,
such as lists and sets.

As an example of encapsulation, and to introduce the notation
used in subsequent figures, Figure 2 (left) shows a network that
encapsulates volatile memory. The API of this network includes
two input neurons, store and recall, and one output neuron, output.
In Figure 2, input neurons are blue, output neurons are red, and
synapse type (𝑉 vs 𝑔𝑒 ) and weight are given by line style and color.
Spike propagation delays are denoted by small circles along each
synapse:  =𝑇syn and #=𝑇neu.

A scalar value is stored by sending two spikes to store such that
the time interval between spikes encodes the value to be stored.
The first spike to store causes the potential of acc to decrease from
just below the neuron’s spiking threshold, and the second spike
stops this decrease. The stored value can later be recalled with a
single spike to recall, which causes the potential of acc to increase
until the threshold is reached, after which it spikes. The result is
output emits two spikes separated by exactly the same time interval
that was stored. The volatile memory network is re-writable, in
that storing a value will clear any value that was previously stored.
However, the network is volatile because a stored value can be
recalled only once, after which the network returns to a resting
state. A network that implements persistent memory is described
in Section 4.2.

3.2 Principle of Composition
One of the central goals of OO programming is to enable scalable
designs by building complex programs from simple pieces. This
approach was biologically inspired, first described by Alan Kay who
noted that individual cells perform relatively simple and atomic
operations yet work together to achieve complex behavior [19].

Like OO design, programming SNN networks should focus on
creating small, self-contained modules and then connecting these
together to achieve something more complex. The principle of com-
position states that encapsulated networks should be connected
to form larger networks, which may then again encapsulate some
behavior. Complex behavior is achieved through recursive applica-
tions of composition, and this approach leads to networks with a
hierarchical structure.

Figure 2 (right) demonstrates this principle. Consider a network
that stores a 2-tuple, an ordered data structure containing two
scalar values. Rather than building this network from individual
neurons, the volatile memory network is reused shown by networks
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Figure 2: Principles of encapsulation and composition using the volatile memory network as an example.

vmem0 and vmem1. The network structure focuses on the ordering
of values, abstracting away the required memory components. The
2-tuple network contains three input neurons, store0, store1, and
recall. Values are stored in each of the volatile memory networks and
later recalled in serial with a single spike to recall. When values are
recalled, output will emit 4 spikes: first, the pair of spikes encoding
the value in vmem0 followed by the pair of spikes from vmem1.

3.3 Principle of Input Precedence
On a von Neumann architecture, a global clock is used to coordinate
the activity of underlying circuits. Synchronous logic enables com-
plex circuits to be built from smaller pieces that are easier to reason
about and debug, compared to asynchronous designs which must
take into account the stochastic nature of signal propagation. Like
asynchronous circuits, spiking neural networks lack a global clock.
There is no built in mechanism to synchronize the computations
performed by individual neurons, and as a result, networks undergo
state transitions as inputs are received or internal changes take
effect. The network may be either waiting for input or performing
a computation, and in some states it may expect not to receive
any spikes. Presynaptic neurons that communicate through an API
must know to transmit spikes at the appropriate time. This notion
is codified by the input exclusion principle, which specifies that each
network can be summarized by a state machine, and other neurons
must have knowledge of this state machine in order to properly
communicate through an API.

For example, consider the volatile memory network in Figure
2 (left). This network begins in a resting state in which it expects
some value to be stored through spikes to store. After the first spike
to store, another spike to store is expected and there must be no
spikes to recall. Recalling a value before any value is stored, or
during a store, can put the network into an undefined state.

This behavior and state descriptions of the volatile memory
network are shown in Figure 3 and Table 1, respectively. Figure 3
shows a spike raster plot of the network as a value is stored and
then recalled. In state 0, the network waits for a value to be stored;
thus only store should spike. The first spike to store causes the

network to transition to state 1, during which it expects another
spike to store. After the value is stored, the network transitions to
state 2 in which that value can be recalled or another value can be
stored, which would overwrite the existing value. A spike to recall
transitions the network to state 3, during which it is expected that
neither store or recall will spike. Finally, the network transitions
back to state 0. Attempting to recall a value in state 0 could put the
network into an undefined state, as could attempting to recall or
store a value while a value is being recalled (state 3).

3.4 Principle of Spike Parity
A temporal encoding implies that values propagate through a net-
work in spike pairs. However, these pairs may not necessarily be
unique. For example, consider encoding two different values 𝑥1 and
𝑥2 with 𝑥1 ≠ 𝑥2. Let Δ𝑡1 = 𝑓 (𝑥1) and Δ𝑡2 = 𝑓 (𝑥2). These two inter-
vals may be represented using four spikes at times 𝑡1, 𝑡2, 𝑡3, 𝑡4 where
Δ𝑡1 = 𝑡2 − 𝑡1 and Δ𝑡2 = 𝑡4 − 𝑡3. This way of transmitting multiple
values in serial enables each value to be processed in isolation from
the other. But if these two values are always transmitted together,
a more compact representation would be to let Δ𝑡1 share it’s 2nd
spike with the first spike of Δ𝑡2. In other words, let Δ𝑡1 = 𝑡2 − 𝑡1
and Δ𝑡2 = 𝑡3 − 𝑡2. In this way, the values are chained together and
can be processed one after the other. Only 3 spikes are needed
instead of 4, and both values occupy time 𝑡3 − 𝑡1 instead of 𝑡4 − 𝑡1,
where 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4. An even more compact representation
is to superimpose the two values on top of each other. That is, let
both Δ𝑡1 and Δ𝑡2 share their first spike such that Δ𝑡1 = 𝑡2 − 𝑡1 and
Δ𝑡2 = 𝑡3 − 𝑡1 where Δ𝑡1 < Δ𝑡2.

Besides scalar values, neurons may emit a spike simply to indi-
cate that a network has reached a given state (or to transition a
network into a given state). For example, the store input neuron
of the volatile memory network expects two spikes that encode
a scalar value while the recall neuron expects only a single spike
to transition the network into a "recall" state. The single spike to
recall can be viewed as a point event, or boolean value that encodes
a 1 where the absence of a spike encodes a 0.
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Table 1: Volatile memory network state descriptions.

State Description Allowed Inputs
0 Waiting for input store
1 Storing value store
2 Waiting for recall store, recall
3 Recalling value

20 40 60 80 100 120 140 160

t (ms)

store

recall

acc

first

last

output

State 0 State 1 State 2 State 3 State 0

Figure 3: Principle of input precedence. The volatile mem-
ory network undergoes state transitions as a value is stored
and recalled. States are labeled above the spike raster plot;
refer to Table 1 for state descriptions.

The parity of a neuron specifies how many spikes it expects to
emit and in what format. There are primarily four different ways
to represent values that differ in terms of parity. These are shown
in Figure 4 and summarized below.

Point: A single spike acts as a flag and encodes a boolean value
where 1 is the presence of a spike and 0 is the absence. In
this format the intervals between spikes have no meaning.

Serial: A scalar value is encoded by a unique pair of spikes,
and multiple encoded values are non-overlapping in time.
In this format 2𝑛 spikes are needed to encode 𝑛 values, and
each value propagates individually in serial order.

Chained: A sequence of scalar values is encoded by sharing
the 2nd spike of the 𝑛th encoded value with the 1st spike of
the 𝑛 + 1th encoded value. In this format 𝑛 + 1 spikes encode
𝑛 values, and the total time of the sequence is proportional
to the sum of the encoded values.

Superimposed: A set of scalar values is encoded by sharing
only the 1st spike of every encoded value. In this format 𝑛+1
spikes are needed to encode 𝑛 values, and the total time to
encode the set is proportional to the largest interval. The
values must be unique and transmit in parallel.

Presynaptic neuronsmust knowwhich format (point, serial, chained,
superimposed) is expected in order to properly communicate with
other neurons. Connecting a neuron that encodes values in serial
to another neuron that expects chained input would likely result in
the network reaching an undefined state. Thus, the principle of spike
parity states that the format and parity of a presynaptic neuron
should match that of a postsynaptic neuron.

Point

Serial

Chained

Superimposed

Figure 4: Principle of spike parity. Four different methods
to temporally encode multiple values. Each method differs
in both format and parity.

4 DESIGN PATTERNS
Whereas a design principle acts as a general guide to good design,
a design pattern is a solution to a specific recurring problem. We
describe patterns that solve two different kinds of problems: routing
and memory. Figuring out how to "pass spikes around" a large
network constitutes a major design challenge when there is an
order of precedence that must be enforced between different parts
of the network. We first focus on patterns for passing spikes around
to different parts of a network. These include patterns for branching
(splitting the path a spike takes) and gating (turning on and off the
path a spike takes). Following this, we describe patterns to store
and retrieve values from memory.

4.1 Routing Patterns
4.1.1 Branching. On a computer that performs serial execution
(e.g., von Neumann and Harvard architectures), selectively exe-
cuting different parts of a program is achieved by jumping the
instruction pointer to different memory locations. Within a SNN,
all parts of the network are executed simultaneously. Thus, to se-
lectively activate different parts of the network at different times, a
branching mechanism is needed.

The branching pattern enables splitting the path a spike follows
to activate different parts of a network over time. An instantiation
of this pattern is shown in Figure 5 (left), which contains a net-
work with 1 input neuron and 2 output neurons. For spike events
𝑒0, . . . , 𝑒𝑛 from input, where 𝑒𝑛 is the 𝑛+1th spike, the behavior of
the branching network is to send even spikes 𝑒0, 𝑒2, . . . , 𝑒2𝑘 to first
and odd spikes 𝑒1, 𝑒3, . . . , 𝑒2𝑘+1 to last. The 𝑉 -synapse with weight
𝑤𝑒 from input to first causes first to spike, followed by a spike along
the inhibitory recurrent connection on first to prevent spiking on
the next input. Likewise, the 𝑉 -synapse with weight 0.5𝑤𝑒 from
input to last induces spiking on every other input. The branching
pattern is characterized by recurrent inhibition to the first neuron
and delayed activation of the last neuron. This pattern is replicated
in many of the networks to follow and represents one of the basic
mechanisms of flow control in a parallel architecture.

4.1.2 Gating. Selectively enabling spikes to flow within a network
is another mechanism by which serial execution can be achieved.
In the gating pattern, spikes may propagate along a path depending
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Figure 5: Branching (left), gating (center), and routing (right) networks.

on the state of the network. Shown in Figure 5 (center) is a gate
network that selectively enables spikes to pass through from input
to output. This behavior is achieved depending on the state of the
gate neuron: if the membrane potential of gate is 0.5𝑉𝑡 , i.e., in an
on state, then a spike from input causes gate to spike, also causing
output to spike. Otherwise, any input spikes are not propagated to
the output. Whereas spike flow in the branching pattern depends on
the number of spikes received, flow in the gating pattern depends
on whether the gate is in an on/off state.

The input neuron, connected to gate, quickly excites and then
inhibits gate over 𝑉 -synapses with weights 0.5𝑤𝑒 and 0.5𝑤𝑖 . The
inhibitory connection from input is delayed by an extra 𝑇neu to
immediately suppress the effect of the excitatory connection.

The gate pattern is characterized by an excitatory/inhibitory
synapse pair with the inhibitory synapse delayed by one time step.
When gate is off, this ensures that any subsequent spikes to input
will not cause any output spikes. But when gate is on, i.e., has
membrane potential set to 0.5𝑉𝑡 , the first excitatory connection will
cause it to spike. The 𝑤𝑒 -weighted recurrent connection to gate
maintains this “on” state, pushing the potential back to 0.5𝑉𝑡 with
the combined effect from the inhibitory input connection.

Incorporating both the branching pattern and gate pattern, the
routing network shown in Figure 5 (right) enables switching be-
tween two different paths. In this network, spikes flow from input
to either out0 or out1 depending on the state of the network. The
network starts in a state that sends spikes to out0. After a single
spike to switch, the network transitions to a state that sends input
spikes to out1. Subsequent spikes to switch alternate the state of the
network between emitting spikes at one of the two output neurons.

4.2 Memory Patterns
Temporally encoded values are transient by nature because a time
interval expires after a finite duration. However, the ability to store
and later recall a value from memory is a central component of
general purpose computation. In a SNN, long term memory can be
achieved by setting the membrane potential of a neuron propor-
tional to some value. This value will remain serialized until it is
later recalled, upon which it is converted from space (a physical
quantity) back to time.

4.2.1 Scalars. The volatile memory network in Figure 2 (left) stores
a value by setting the membrane potential of the acc neuron. This

network enables recalling a value only once after it is stored. A
network capable of long term storage and multiple retrievals would
better facilitate general purpose computation within a SNN. Using
the flip-flop pattern, we show that volatile memory in conjunction
with routing can form the basis of a persistent memory store.

The flip-flop pattern is characterized by a bistable network capa-
ble of long-term information storage. Figure 6 shows a persistent
memory network which is an instantiation of this pattern. Persis-
tence is achieved by a composition of volatile memory networks
and routing between the networks, much like a flip-flop circuit,
passing the stored value between the two volatile memory net-
works as it is recalled. This network enables multiple consecutive
recall operations, and like the volatile memory network, values can
be overwritten after they are stored.

4.2.2 Vectors and Sets. The need to store and recall values from
structured memory arises frequently in general purpose computa-
tion. We describe two different patterns that implement two com-
monly used data structures: a vector, which stores an ordered se-
quence of scalars, and a set, which stores an unordered collection
of unique scalars. The implementation of more complex data struc-
tures (e.g., a hash table or tree) remains an item for future work.

The sequential memory pattern is characterized by a sequence of
memory networks connected in serial. Shown in Figure 7 (top) is a
sequential memory network encapsulated by an API that enables
the caller to store a value to each memory location and recall the
values in serial through the output neuron. Following the principle
of spike parity, this network outputs values in serial format. A spike
to recall causes the memory at location 0 to output its value, which
then recalls the memory at location 1, and so on, such that the
values in memory appear in serial at the output.

A central principle of encoding values as time is that multiple
values can be superimposed, whereby different values are projected
onto the same time interval. A single spike marks the beginning
of a set of superimposed values, and each subsequent spike marks
the end of an interval, i.e., a single value. Superimposition pro-
vides a compact representation for multiple values, requiring only
𝑁 + 1 spikes to represent 𝑁 values and occupying a time interval
proportional to the largest value.

Encompassing this principle is the superimposed memory pattern,
shown in Figure 7 (bottom). Like sequential memory, values can be
stored to different locations; however, a recall causes every value to
be recalled in parallel and piped to a single output, resulting in the
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Figure 7: Sequential (top) and superimposed (bottom) mem-
ory networks implement vectors and sets, respectively.

superimposition of all values in memory. Because the values are
superimposed, two values of equal magnitude in different memory
locations will appear as a single value at the output neuron. In this
regard, superimposed memory can indicate only set membership
and does not disclose the memory location of each value.

5 DISCUSSION
5.1 Related Work
General purpose computation with neural networks (not necessar-
ily spiking) has generally taken two different approaches: top-down
and bottom-up. In a top-down approach, network parameters are
configured inductively by learning to generalize from a set of ex-
emplars. This approach largely consists of deep neural networks
learned through backpropagation.

The neural Turing machine (NTM) [10] is a fully-differentiable
network augmented with external memory and attentional process,
resembling a von Neumann architecture. In the NTM, a controller
that interacts with the world through external inputs and outputs is
able to read from and write to the external memory. This model was
later extended to the differentiable neural computer (DNC) which
addressed some deficiencies of the NTM, specifically the abilities to
discover unused memory locations, free previously used memory
locations, and better preserve temporal linkage.

In a bottom-up approach, a neural network is configured de-
ductively or derived from a set of axioms. This approach is akin
to software development, as the programmer must construct the
network by hand or using tools based on deductive principles, such
as compilation. The NEural Language (NEL) provides a framework
to deterministically configure a neural network that implements a
procedure specified in a high-level programming language [22, 23].
Neuron activations encode scalar and boolean values as well as lists
and stacks, for which a set of primitive functions are used to read
and write to. In the same spirit, JaNNeT (Just an Automatic Neural
Network Translator) compiles networks using cellular encoding as
an intermediary representation, requiring four different transfer
functions and asynchronous global dynamics [11].

Unlike NEL and JaNNeT that require precise neuron activation,
vector symbolic architectures (VSAs) encompass a class of mod-
els in which symbols are mapped to high-dimensional vectors in
a space that provides binding and superposition operations [14].
These operations enable pointer manipulation and form the basis
of symbol processing. In the neural engineering framework (NEF),
vectors are encoded by spike rate based on neuron tuning curves,
and functions are implemented through transformations of encoded
vectors between populations of neurons [6]. This approach enables
the representation of algorithms atop biologically plausible models,
such as with leaky integrate-and-fire (LIF) neurons [24].

5.2 Portability Across Architectures
Although major neuromorphic architectures (e.g., TrueNorth, Loihi,
SpiNNaker) differ in terms of architectural constraints and neu-
ron dynamics, most are capable of simulating an IF model. Thus,
the IF neuron model is a greatest common denominator across
architectures and may serve as a kind of standardized instruction
set. Designing networks that are compatible with an IF model will
maximize portability across architectures.

In this work, 𝑔𝑒 -synapses form the backbone of temporal encod-
ing and many patterns described. While𝑉 -synapses are compatible
with an IF neuron model, 𝑔𝑒 -synapses are not. However, it is possi-
ble to simulate 𝑔𝑒 -synapses within a IF model using only a small
number of 𝑉 -synapses.

Figure 8 (right) shows a network that simulates the behavior
of a 𝑔𝑒 -synapse (left) using only 𝑉 -synapses. The 𝑔𝑒 -synapse con-
necting neurons pre and post is replaced with auxiliary neurons
aux0 through auxN-1 and 𝑉 -synapses. When pre spikes, it induces
tonic spiking behavior in aux0, which continues to spike until post
spikes. The tonic spiking of aux0, connected to post with weight
𝑤aux = 𝑉𝑡/(𝑇max/𝑇syn), mimics the integration of the linear vari-
able𝑔𝑒 . This occurs until post spikes, when an inhibitory connection
causes all aux neurons to stop spiking as if 𝑔𝑒 were reset back to
0. An example of this behavior that mimics a single spike along a
𝑔𝑒 -synapse is shown in Figure 9.

In cases where a higher resolution is needed, i.e., several spikes
over a 𝑔𝑒 -synapse are expected, several aux neurons can be placed
between pre and post with staggered activation upon successive
spikes to pre. The weights to each aux neuron follow a harmonic
progression to achieve a stepwise activation, where aux0 starts
tonic spiking with the first spike from pre, aux1 starts tonic spiking
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with the second spike from pre, and so on. This form of control flow
is a generalization of the branching pattern.

Note that since an auxiliary neuron is placed between pre and
post, only 𝑔𝑒 -synapses with at least delay 2𝑇syn +𝑇neu can be sim-
ulated. Connections with delay 𝑇syn (which is the default) must
first be scaled up to 2𝑇syn + 𝑇neu to obtain a functionally equiv-
alent network. This can be achieved by globally scaling time by
𝑇syn ≡ 2𝑇syn +𝑇neu. In most cases however, simply increasing the
delay of the 𝑔𝑒 -synapse alone achieves the desired effect.

6 CONCLUSION
General purpose computation with spiking neural networks re-
quires a paradigm shift from conventional software design as well
as addressing practical challenges. We introduced four principles
that aim to facilitate good design of SNNs. These principles are
inspired by a mix of biological principles and OO software design:
encapsulation and composition work in concert to facilitate the
building of complex networks from simple pieces; the principle of
input precedence specifies that neurons must have temporal knowl-
edge of a network’s API as it undergoes state transitions; and the
principle of spike parity describes four different ways of encoding
values and that spike parity must match between input and output
neurons from different networks. In addition, we described several
patterns that solve recurring design problems that are specific to

SNNs, notably the lack of native control flow and memory struc-
tures. Two primary ways in which the routing of spikes can enforce
serial execution are through branching and gating. The storage and
retrieval of multiple values to memory can be accomplished with
persistent memory networks that are connected in either serial or
parallel to form vectors and sets, respectively. Together these pat-
terns provide a means of manipulating and passing around symbols
in a way that is space efficient compared to learning approaches.
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